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The isothermal reaction between a gas and a porous solid was studied theoretically. 
The conversion-time relationship for the solid is calcttlated for an irreversible, first-order 
reaction with respect to the gaseotts reactant and taking into account. the diffusional 
resistances of the gas film and the ash layer. This calctdat.ion is performed assuming the 
gaseous reactant is consumed inside the porous solid, but taking into account t,he way in 
which this consumption affects the porosity and hence t,he available surface area and the 
etrective diffusivity. The effectiveness factor used in such a calculation is also developed 
in this paper and is expressed as a correction factor to the Thiele modulus. 
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NOMENCLATUHE 

reaction components 
total (BET) surface area of 
solid B per unit volume, 
LZ/L3 
outer surface area of solid B 
for reaction per unit volume, 
a, = S,.,‘,j-/v, L2/L3 
internal surface area of solid 
B per unit volume, Lz/L3 
dimensionless surface area of 
solid B per unit volume, 
a* = n/au 
stoichiometric coefficients 
molar concentration, moles/ 
L3 
dimensionless concentratoin 
of A, c** = CA/CA, 
dimensionless concentration 
of B, c*n = cB/cHa 
true molar density of solid, 
moles/P 
diffusivity through pores, 
L2/8 
effective diffusivity of A in 
reaction zone, L2/0 
effective diffusivity of A in 
ash layer, L2/0 
coefficient defined in Eq. (37) 

e’ 

h” 

h+ 

k’ 

M 

N 

ii, 

Bi, 

Q 

coefficient defined in Eq. (48) 
coefficient defined in Eq. (11) 
Thiele modulus, h = 
L(k’a;ocB,y-l/DAo)o.j 
correction factor to Thiele 
modulus, defined in Eqs. (6) 
and (42) 
coefficients in Eq. (14) 
reaction rate coefficient per 
unit volume, 0-l 
reaction rate coefficient per 
unit surface area, L/B 
mass transfer coefficient, L/e 
characteristic length, L = 
v/s, L 
generalized Thiele modulus 
defined in Eq. (6) 
coefficient in Eq. (44) 
number of moles, moles 
Biot number for mass trans- 
fer through boundary layer, 
Bi, = kA,/lC’~‘,J 
Biot number for mass trans- 
fer through ash layer, Bi, = 
D’~/R,k’e’nf 
coefficients in Eq. (52), de- 
fined in Eq. (53) 
coefficient in Eqs. (15) and 
(16) 
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coefficient in Eq. (53) 
reaction rate of A per unit 
volume, moles of A/BL3 
reaction rate of A per unit 
surface area, moles of A/8L* 
particle radius of solid B in 
dispersed solid model, Eqs. 
(8) and (9), L 
dimensionless pore radius in 
Petersen model, Eqs. (11) 
and (12), r* = r/r0 
pellet radius, L 
dimensionless pellet radius, 
R* = R/Ro, L 
geometrical area, L2 
time, 6 
dimensionless time, t* = 
brfA,6fi.ft/R&o 
variable defined in Eq. (44) 
volume, L3 
coefficient defined in Eq. (46) 
conversion 
distance, L 

solid-gas interface 
bulk gaseous phase 
initial value 
boundary between ash la,yer 
and reaction zone 

reference condition 

dimensionless surface area of 
solid B, (Y = ~,/(a, + ai)) 
dimensionless surface area of 
solid B, /3 = (1 - a)/a 
reaction order 
voidage 
volumetric fraction of solid 
B 
surface fraction of solid B at 
boundary between ash layer 
and reaction zone 
overall effectiveness factor 
(OEF) 
internal effectiveness factor 
(IEF) 
labyrinth factor 

Let us consider the reaction between the 
porous solid B and the gas A (Fig. I), 

which according to Eq. (1) can lead to the 
production of gas C and the porous solid D 
which can remain as an ash layer surround- 
ing the reactant B. It is assumed that the 
reaction takes place isothermally. 

As the objective of the present study was 
to calculate the conversion-time relationship 
for the solid B, we started by writing the 
equations of change for both reactants, 
letting CA denote the concentration of A 
and cn the concentration of B at any point, 

dCA E- = V. DAVCA - TA, 
at 

(2) 

In these equations E is the porosity, Da is 
the effective diffusivity of A, and rA is the 
reaction rate. All of these depend on the way 
in which the solid B is consumed; the 
porosity because the solid disappears, the 
diffusivity because the pore structure is 
opened up, and the reaction rate because 
it depends on the internal surface area per 

\ 
\ 
I 
I 

I 

FIG. 1. General pictlu-e of t,he reacting system. 
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unit volume, ai. Moreover, since the 
reaction proceeds at a rate which depends 
on position, profiles of varying q DA, and ai 
are developed which must be taken into 
account in solving Eqs. (2) and (3). The 
dependence of rA and ai and of DA on t is 
given by the pair of equations 

‘?“A = k’aifi(CA), 
DA = fz(~,fi), 

where Q is the labyrinth ,factor. 

(4) 
(5) 

Consequently, once a model of the pore 
structure is stated, Eqs. (2) to (5) can be 
solved provided Eq. (3) is written in terms 
of the pore wall variation. This solution has 
been performed numerically for a random 
pore distribution (11). Others have solved 
Eqs. (2) and (3) by avoiding the discrete 
picture for the pseudo-steady state (2, 7, 8) 
or by analogy with a transient absorption 
with chemical reaction (9). 

Nevertheless, in all these solutions (2, 7-9) 
the constancy of surface area of B and 
effective diffusivity of A were assumed. 

The influence of effective diffusivity 
profiles was taken into account (17) by 
means of numerical solution of Eqs. (2) and 
(3) for a first-order reaction with respect to 
B, second-order with respect to A, and using 
the pseudo-steady-state assumption. 

In this study we tried to obtain an 
analytic solution of Eqs. (2) and (3), taking 
into account the variation of the surface area 
of B and the effective diffusivity of A due to 
the transient behavior of the pore structure. 

THE SEARCH FOR AN ANALYTIC SOLUTIOK 

Let us first state the hypotheses which are 
sufficiently unsophisticated to enabIe us to 
obtain the desired solution. The fundamental 
hypotheses are: (i) Reaction takes place 
isothermallv. (ii) Reactant A is consumed 
completely ‘inside solid B at some distance 
from its outer surface. (iii) Pseudo-steady 
state is reached for reactant A. 

The second assumption implies that the 
internal effectiveness factor (IEF’) (5) will 
lie on the so-called asymptotic region (12, /t). 
The t.hird assumption was discussed in a 
general fashion by Danckwerts (6) a~nd 
applied to gas-solid reactions by Bischoff 
(.3) and Mien (17). 

Thus, we foresee that the IEF (5) must be 
expressed by 

7)i = l/m = h+/h, 03 

where m is a generalized Thiele modulus 
which can he calculated by the method 
proposed by Bischoff (4) ; h is the Thiele 
modulus which corresponds to the solid B 
without surface area and diffusivity gradi- 
ents, namely, the Thiele modulus for initial 
conditions. From this, the meaning of hf is 
obvious: it is a correction factor due to the 
existence of surface area and effective 
diffusivity profiles inside the porous solid B. 
Furthermore, it. wiIl he important to 
analyze the influence of the surface area 
and effective diffusivity profiles upon hf for 
different pore structure patterns. 

However, the three fundamental hypothe- 
ses are not sufficient to obtain an analytic 
solution of Eqs. (2) and (3), and we need, in 
addition, some assumptions which will be 
used first to express the surface area and 
effective diffusivity as functions of the 
dependent variables (CA or cH) and then to 
show that Eqs. (2) and (3) can be solved 
separately. 

Let us analyze the relationships we need 
briefly. Regarding the first purpose, it is 
known that once a pore structure has been 
established, there is a relationship between 
the surface area and the concentration of the 
solid (IA,). If, in addition, it is assumed that 
the effective diffusivity of A depends only 
upon porosity, then it will be also a function 
of solid concentration. Hence, Eqs. (2) and 
(3) could be written in terms of CA and cH as 
dependent variables. These are obtained in 
Sects. a md b, beIow. 

On the other hand, if some relationship 
between CA and cl%, and between c.& and CD, 
can he derived from reasonable assumptions, 
Eqs. (2) and (3) can be handled as un- 
coupled. This is obtained in Sect. c. 

a. Relationship between surface area 
and solid concentration. We will look 
for a flmction 

a*i = a*i(c*,(), (7) 

for different pore patterns. It is seen that the 
relationship between surface area and solid 
concentration in Eq. (7) was mritteyi in 
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terms of dimensionless variables. The func- 
tionality in Eq. (7) is relatively easy to 
obtain if it is assumed that no new pores are 
generated by the reaction. There are two 
well-defined cases : 

1. One case is that of a pellet which is 
made by compaction of small nonporous 
particles. As in this case the solid is the 
dispersed phase, we will call it the “dispersed 
solid model.” 

For this model the surface area per unit 
volume is given by 

Ui = (3r2/rf)34s)tnc* w 

On the other hand, if the number of 
particles per unit volume remains constant 
and particles do not change their shape 
during reaction, it follows that 

CR = ct3,(r3/ro3). (9) 

By introducing Eq. (8) in (9) we obtain 

(J*i = (c*p. (10) 

2. The other case is that of cylindrical 
pores randomly interconnected, which has 
been developed by Petersen (11); hence, we 
will call it the “Petersen model.” 

Accordingly to this model, 

(11) 

c*B = (l/f&) 1 - 5 r*$ (12) 
( 

where g is given by 

g3 - 22 + go = 0. (13) 

Consequently, the expression for the rela- 
tionship between ai and en is of some com- 
plexity. Nevertheless, for ~0 = 0.30 (which is 
the initial porosity of many solids), that 
relationship is well approximated by an 
equation of the type 

U*i = i + jC*B - pC*‘B + *’ (14) 

where: i = 0.56, j = 1.43, p = 0.97, v = 
0.0137, w = 0.0244. 

It is interesting to compare these two 
models by their respective influence upon h+. 

As it has been said before, a different case 

is given when new pores are generated. In 
this case the surface area of the solid could 
increase many times that of the original, as 
was shown by Walker (16). Obviously, the 
probability of generating new pores depends 
upon the physicochemical and structural 
properties of the solid phase. Thus, it is 
very difficult to make any prediction. 

Hence, what we shall do here is to take a 
simple, idealized, variation of u*i with some 
parameter of the solid. According to the 
experiments of Walker (16) for carbon 
combustion in the zone in which A seems to 
be exhausted inside the solid, a sound 
idealized variation of a*i with porosity will 
be of the form 

U*i = 1 + e0 (6 - 6,) for E 5 E’, (15) 

and 

U*i = Q for c 2 E’, (16) 

where q > 1. Walker’s observed value was 
p 118. We will call this the “pore generation 
model.” 

The relationship obtained between a*i and 
Cam allow us to express the reaction rate of A 
as a function of the dimensionless concentra- 
tions c*A and c*B [the porosity in Eq. (15) 
can be readily transformed in terms of solid 
concentration]. 

b. Relationship between effective dif- 
fusivity and solid concentration. The 
effective diffusivity in porous media depends 
upon the geometry of the pores. There is a 
well-known relationship in terms of the 
voidage c and the labyrinth factor Q 

DA = a)&L (17) 

This expression has been simplified by 
some authors assuming that 

D = l/a. (1% 

In such a case Eq. (17) reduces to 

Da = a)Ac ' = D~o(d+, (19) 

where co is the voidage of the original 
solid B. Equation (18) has been observed to 
check Walker’s experimental data (16) for 
carbon combustion and Satterfield’s collec- 
tion of data (13) for many porous solids. 

Besides its empirical nature, Eq. (18) 
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represents a particular case of the Wakao- 
Smith model for diffusion (15) when there 
are only micropores. Alternatively, Eq. (19) 
can be written as follows: 

DA = DA,(~,‘Q?) 2. (20) 

c. Relationship between gaseous and 
solid concentrations. So far we have ex- 
pressed the two variable coefficients in 
Eqs. (2) and (3) as a function of CB and CD. 

If we are now able to assume a relationship 
between CA, cH, and CD, Eq. (2) could be 
written in terms of CA, and so it could be 
solved without taking into account Eq. (3). 
In order to get such a relationship among 
concentrations we will assume that the 
surface area and the effective diffusivity 
are constant and that the reaction is 
irreversible and y order with respect to A. 

The constancy of the surface area and 
effective diffusivity is only used to get a 
reIationship among CA, cut and CD. Once 
this relationship has been obtained, Eq. (2) 
will be solved, taking the surface area and 
effective diffusivity as variable coefficients. 
The relationship so derived is approximately 
correct, but the final result shows an 
excellent agreement, between theory and 
experiment. 

Taking into account the three funda- 
mental hypotheses and the assumptions just 
mentioned, Eq. (2) turns out to be, if it is 
written in dimensionless form, 

(21) 

Equation (21) is valid for any geometry 
whenever the Thiele modulus is large enough, 
because most of the reaction then takes place 
near the outer surface. 

Taking into account that CA is uniform on 
the outer surface of the solid and falls to zero 
inside it, Eq. (21) can be integrated once by 
the Clairaut substitution to give 

&*A 
__ = [Z/(-f + I)]lneA 

&+LH? 
dz’ (22) 

Xt the same time, 

hr _ = it 
dt s 

v Ci( dl’, (23) 
0 

but for high Thiele modulus it can be 
assumed that cs 11 caO; hence, Eq. (23) can 
be simplified to 

On the other hand, Eq. (3) can be written as 
follows : 

f& _ b/KAY 
dz dz,/dt (25) 

But taking into account that 

dnB --= 
dt bD S dCA 

A dz 6’ (26) 

then, from Eqs. (24) and (26) it follows that 
Eq. (25) can be written as 

+I, _ h%3,CAY 

dz DA(~cA/~~),' 
(27) 

Equation 27 can be written in terms of 
dimensionless variables, as follows : 

de*,3 
- ---=- = ?nCA *-r 

d.2 
. (2s) 

Consequently, from Eqs. (22) and (28) it 
follows that 

- $ = [2/(y + l)]cA*-. (2% 

The relationship between c*A and Cam is 
then readily obt.ained taking into account 
that the boundary conditions are, 

at the center: c*A = 0 Cfll = 1, 
at the reaction front: c*A = 1 c*H = 0. 

(30) 

The following result is obtained: 

c*B = 1 - cA*(Y+‘D* (31) 

Furthermore, at the same time, the 
following relationship holds : 

~~!it!!! = b&! 
dt dt 

Hence, by a similar treatment to that we 
have just done, it can be shown that 

c*D = CA 
*cY+w2 

. (33) 

The relationship between C*A and c*B 
given by Eq. (31) was also obtained by 
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Ishida (7) by analytical integration of 
Eqs. (2) and (3) and numerically by Ausman 
(1) for a spherical solid and for the particular 
case y = 1. 

By substituting now Eqs. (31) and (33) 
into Eqs. (7) and (20), it is seen that Eq. (2) 
can be written in terms of CA exclusively. We 
are then able to integrate Eq. (2) once to 
obtain the effectiveness factor; obviously 
the so-calculated effectiveness factor will 
take into account the profiles of surface 
area and effective diffusivity through the 
porous solid. On the other hand, the mass 
balance for B can be written as follows 

dnls 
dt 

= br’Aqv, (34) 

where r] is the overall effectiveness factor 
(OEF) (5). 

By introducing the calculated effective- 
ness factor, Eq. (34) can then be integrated 
to obtain t,he desired solution. 

CALCULATION OF THE 
EFFECTIVENESS FACTOR 

By introducing Eq. (31) into Eq. (7), it 
follows that 

a*i = a*i(c*A). (35) 

Assuming that the reaction is irreversible 
and first order with respect to A and by 
introducing Eqs. (31) and (33) into Eq. (20), 
it follows that 

L)A = DAdI $ ec*A)‘, (36) 

where 

e=;‘,(J3-2)=‘-. (37) 

So far we have related the variable 
coefficients of Eq. (2) to CA. 

For high Thiele modulus and pseudo- 
steady-state conditions, Eq. (2) simplifies to 

$D&- ?“A = 0, (38) 

but taking into account Eqs. (4, 10, 14-16, 
31, and 36), Eq. (38) can be written as 
follows : 

$f(c’A) ‘2 - hc*Au*i(c*A) = 0, (39) 

where f(c*A) indicates the influence of c*A 
upon DA, and oi(c*A) that of C*A upon U*i. 

The function f(c*A) is given by Eq. (36) 
and that of o*j(c*A) arises from the introduc- 
tion of Eq. (31) into Eqs. (10, 14, or 16-17) 
according to the pore structure model which 
has been selected. 

Hemembering 

dC*A 
- = m = l/vi 
dz* 

and applying the Clairaut substitution to 
Eq. (39), the following result is obtained: 

m=h 2 
[ / ()l (1 + 

-0.6 
ec*A)2c*Au*i(c*A) dC*A . 1 

(41) 

Thus, taking into account Eq. (B), it is 
seen that 

h+ = 2 o1 (1 + 
[/ 1 

0.5 
eC*.#C*AU*i(C*A) dC*A , 

(42) 

where the parameter e measures the influence 
of effective diffusivity profiles upon h+. 

Integration of Eq. (42) is performed below 
for the three proposed pore structure models 
and for different values of e (for the pores 
generation model we take q as the parameter). 

Dispersed solid model. By introducing 
Eq. (31) (for y = 1) into Eq. (ll), the 
latter in Eq. (42), and integrating, it follows 
that 

h+ = (2[e2(6N ztL5/3 _ @rU8/3 + T3Tu”/3 

- jXN2Q/3 + +9TU”/3 _ &u14/3)]o’)0.5, 

(43) 
where 

N = 1 $ (l/e) and u = 1 - c*A. (44) 

The value of h+ was calculated for 
different values of e, and the results are 
shown in Table 1. 

Petersen model. By introducing Eq. 
(31) (for y = 1) into Eq. (14), the latter in 
Eq. (42), and integrating, one obtains 

h+ = [2(E + F + G + I + J + K + M)]0~5, 
(45) 

where 
Is = (i + j - p)/2, 
F = [2p - .i + 2e(i + j - p)1/3, 
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G = e(4p - 2j) - p + ez(i + j - p) 
H = e[2p(e - 1) - ej]/5, 
I = e12p6 

J=-v 
w’ - 1 

l+w’ln-- , 
W’ ) 

K = 2ve 
(IO’ - 1)” - U? + ow, 

2 
w’ - 1 

+ w” In ___ 
WI J 

2 

A4 = e2d 
1 

(w’ - 1)3 - WI3 
3 

- ?g [(w’ - 1)’ 

_ J] - 3~’ - 1~‘~’ lrl w ‘-1 
w’ f 

f 

where 
%o’ = 1 + w. (46) 

The value of h+ was calculated for 
different values of e, and the results are 
shown in Table 1. 

TABLE 1 

Correction factor, h+ 

Ash layer Dispersed solid model Petersen 
porosity model, 

l % to = 0.20 E” = 0.30 e” = 0.30 

0. 20 0.68 
0.30 0.855 0.68 0.90 
0.40 1.05 0.795 1.09 
0.50 I .14 0.925 1.27 
0.60 1.44 1.06 1.46 

I‘ores generation model 

QJ = 0.30 t, = 0.60 t’ = 0.40 

rl h+ 

5 3.72 
10 5.25 
15 6.45 
20 7 45 

Pores generation model. If it is taken 
into account that for y = 1 

f = 60 + e’c.4, (47) 
where 

e’ = CBO - 5, 
G!l CID 

(48) 

then, by introducing Eq. (47) into Eq. (15) 

and the latter and Eq. (16) into Eq. (42), an 
equation is obtained which can be integrated 
in two steps. The first integration will be 
between the limits 

t = EO c*A = 0, 
E = e’ c*A = &A: 

and the second one between 

t = e’ e*A = c*‘*, 
c = es c** = 1. 

According to Eq. (47), 

(49) 

(501 

Hence, the whole integration gives 

+ Qc*‘%A + T(1 - J.Y*) 

11 
0.3 

+ U( 1 - C*‘j*) + W( 1 - &) (52) 

where 

0 = e(2 + y/)/3, 
P = e*(l + 2q’)/4, 
Q = e”q’/5, 
T = q/2, 
C = 2eq/3, 
W = e2q/4, 
q’ = (q - I)/(& - CO) - 1. (53) 

The value of h+ was cttlculated for 2~11 

initial voidage of 0.30, a voidage of the ash 
layer of 0.60, t’ = 0.40, and different values 
of q. These results are also shown in Table 1. 

The results condensed in Table 1 show 
that the influence of the voidages (or the 
influence of e) upon h+ is of the same order 
of magnitude for the dispersed solid and 
Petersen models, though they represent 
quite different pore patterns. 

C'ALCULATIOX OF 
C~ONVEHSION-TIME RELATIONSHIP 

Now we have to introduce Eq. (41) into 
Eq. (34) and to integrate it. However, to 
perform that integration, a relationship 
between PLH and V is necessary. 

Relationship between nR and V. Equa- 
tion (34) can also be written as follows: 
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/ 

1; 
nH = CR0 

0 
c*H dV. (54) where 

If Eq. (31) (for y = 1) is taken into 
a = ~/‘(a, + ai,) and 0,. = 3&J/R. (61) 

account, then Eq. (54) can be written as In addition, the right-hand side of Eq. (34) 
follows : can be written in terms of the dimensionless 

radius according to Eq. (59). 

(55) 
By introducing Eq. (60) into Eq. (34), 

taking into account that Eq. (34) is equal to 

The term containing the integral in 
Eq. (59), and assuming that the term ~‘nf 

Eq. (55) is the IEF for a zero-order reaction 
remains constant as solid B is consumed, the 

with respect to B, first-order with respect to 
following result is obtained : 

A, and constant effective diffusivity, namely, dR$ 
for the conditions for which the relationship 

* dt 
between c*A and Cam was calculated. 

For our later development, that term does 
not represent the true IEF. However, the 
form of Eq. (55) makes the influence of that 

= (1 gj + p”(h+‘ho) 

term very small, especially when we consider 
that our development is only valid for high 
Thiele modulus. Hence, it can be assumed (62) 
that 

nB = ~sJ(l - Ti). (56) 
where 

Equation (56) can be transformed into a 
P = (1 - a)/a and t* = br’,&Bft/RocBo. 

rate expression by differentiating it with 
(63) 

respect to time: Equation (62) can be integrated between 

dnB dV 
t* = Oandt* = t*togive: 

-EC 
dt B’z ( > 

1-y. (57) 

Two alternate expressions of Eq. (57) are 
“*=&&-&l-R’.) 

(58) 
+ &) (1 - R**) 

1 

(5% + 1+ (floh+/ho) - v 3hi1 i1 - R*) P 
2 

It is seen from Eq. (59) that the first term (64) 
inside the parentheses represents the con- 

+ 3[po + (ho/h+)] In R*’ 

version contribution due to the swept Let us remember that the instant t* = 0 is 
volume and the second term that due the time at which the profiles of CA and ca 
to cross section variation. Hence? for a were just developed. 
solid with slab geometry, Eq. (59) reduces In addition, from Eq. (56) it follows that 
to an expression which is identical to that 
used for the MBM. It is seen that now we 
are able to integrate Eq. (34) to obtain the 

zB = 1 - (1 - &JR*“. (65) 

conversion-time relationship. 
Calculation of the conversion-time rela- Equation (65) together with Eq. (64) 

tionship. The OEF for a spherical solid yield the desired relationship between con- 

is given by (5) : version and time. 

01 + (1 - oll(h+lh”) 
Equation (64) implies the most general 

solution for the size-time relationship in the 
asymptotic region of the IEF for an iso- 
thermal, irreversible, first-order reaction 

(60) with respect to A and different pore structure 
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models whose influence is measured by the 
parameter ht. 

There are four terms in Eq. (64) which 
describe the contribution to conversion due 
t,o the cB profile: those which contain h+ in 
the second term; that which contains 2h+/3 
in the third term, and the last, logarithmic, 
term. The other terms represent the con- 
version contribution due the volume swept 
out as the core shrinks. Equation (64) 
contains a very important particular case, 
that of the moving boundary model. 

If the Thiele modulus approaches infinity, 
that is to say the CA profile approaches a step 
function 011 the outer surface of solid B, 
Eq. (64) will reduce to 

+ & (1 - R**) + (1 - R*), (66) 
4 P 

and Eq. (65) will reduce to 

.rt< = 1 - R*“! 

provided R* # 0. 

(67) 

Equation (66) can in turn be reduced to 
simpler expressions in three limiting cases : 
(i) when both Biot numbers approach 
infinity, namely, when the surface reaction 
controls; (ii) when the Biot number of the 
boundary layer approaches infinity and that 
of the ash layer approaches zero, that is to 
say, when diffusion through the ash layer is 
the controlling step; and (iii) when the Biot 
number of the ash layer approaches infinity, 
but that of the boundary layer approaches 
zero, in which case, the reaction is con- 
trolled by diffusion through the boundary 
layer. 

In the last two cases, the expression for 
the dimensionless time obviously changes; 
thus when ash layer is the controlling 
resistance, t* = 6D’AbcA,t/R&~o, and when 
the boundary layer is the controlling 
resistance, t* = 3ka,bc.~,t/R&~,. 

An analytic solution was obtained for the 
conversion-time relationship when a porous 
solid reacts with a gas. This solution 

contains the contribution to reaction due to 
outer surface area of solid reactant and 
hence it approaches the moving boundary 
model as a limiting case. Surface area and 
effective diffusivity profiles through porous 
solid due to reaction were taken into 
account. Influence of pore structure pattern 
was measured by means of a correction 
factor of the initial Thiele modulus. The 
main assumptions are: the system is iso- 
thermal; the reaction is irreversible and first 
order with respect to the gaseous reactant; 
the Thiele modulus is large; and the pseudo- 
steady state for the gaseous reactant is 
reached. 

Suggestions and remarks of Professor Rutherford 
Aris are gratefully acknowledged. 

REFERENCES 

1. ~~USMAN, J. M., .~ND WATSON, C. C.. Chem. 
Eng. Sci. 17, 323 (1962). 

2. BEVFRIDGE, G. S. G., “Ssymposium on Ag- 
glomeration, Philadelphia, 1961” (W. A. 
Knepper. ed.). Wiley, New York, 1961. 

3. BISCHOFF, K. B.. Chem. Eng. Sci. 18, 711 
(1963). 

.$. BISCHOFF, Ii. B., AZChE J. 11, 351 (1965). 
6. CALVELO, A., AND CUNNINGHAM, R. E.. 

J. Catal. 16, 397 (1970). 
6. DANCKXVERTS, P. V., Trans. Faraday Sot. 46, 

701 (1950). 
7. ISHIDA, S., AND WEN, C. Y., AIChE J. 14, 

311 (1968). 
S. KASAOKA, S., AND SAKATA, Y., Kagnku Kognku 

(Abr. Ed. Eng2) 4, 223 (1966). 
9. LACEY. D. T., BOWEN, J. H.. .~ND B.ASDEN. K. 

S., Ind. Eng. Chem. Fundnm. 4, 275 (1965). 
10. MENDOZA, E., CUNNINGHAM, R. E., 451) 

RONDO, J. J., J. Catnl. 16, 000 (1970). 
11. PETERSEN, E. E.. AIChE J. 3, 443 (1957). 
12. PETERSEX, E. E., Chem. Eng. Sci. 17, 987 

(1962). 
IS. SATTERFIELD, C. S., AND SHERWOOD, T. K.. 

“The Role of Diffusion in Catalysis.” Ad- 
dison-Wesley, Reading, Mass., 1963. 

14. SHEN. J., AND SMITH, J. M., Ind. Eng. Chem. 
Fundam. 4, 293 (1965). 

16. WAKAO, N., AND SMITH, J. M.. Chem. Eng. 
Sci. 17, 825 (1962). 

16. WALKER, P. I,., JR., RUSINKO, F., JR., AND 

AUSTIN, L. G., “Advances in Catalysis,” 
Vol. 11, Academic Press, New York, 1959. 

17. WEN, C. Y.. Znd. Eng. Chem. 60, 34 (1968). 


